Quantcast
Viewing all articles
Browse latest Browse all 532

图像识别——ubuntu16.04 movidius VPU NCSDK深度学习环境搭建-桐烨科技-踏上文明的征程-51CTO博客

这篇文章本人不打算长篇累牍去写,结合以前写的文章,从软件角度去写一些点滴,伴随人工智能AI的火爆,现在图像识别算法也异常火爆,上一篇文章提到Intel movidius Myriad 2 VPU(MA2450)是一种简单易用的深度学习平台,说到简单易用,但很多网友和客户还是一头雾水,本人还是觉得在这里班门弄釜一下,简单写一些,在ubuntu环境下搭建深度学习开发环境。
Intel movidius提供一个免费下载的深度学习开发版本,叫NCSDK,是配合Intel movidius 神经计算棒(Neural Compute Stick简写:NCS)一起使用的,目前最新的版本是V2.05.00,这个版本我们的软件工程师还在测试,这里先介绍V1.12.00。 Intel movidius官网是: https://developer.movidius.com/。很多公司都已经采购一个Intelmovidius 神经计算棒学习。NCSDK安装手册要求使用64bit ubuntu16.04,这个本公司软件工程师也正在玩的环境。这里本人也没有必要去如何安装64bit ubuntu16.04,即ubuntu-16.04.3-desktop-amd64.iso,因为本人已经写过32bit的ubuntu16.04的文章见《图像识别DM8127开发攻略——开发环境搭建》和64bit ubuntu18.04的文章《Ubuntu-18.04 LTS嵌入式linux开发环境搭建》,参考这两篇文章应该完全可以正确安装64bit ubuntu16.04,不过有两个工具需要安装:Docker和Python virtualenv,百度一下使用apt-get install docker-ce相关文章和apt-get install virtualenv,apt-get install virtualenvwrapper相关文章。
环境搭建很简单,Intel movidius已经把整个免费的NCSDK打包好,你只要保证你的64bit ubuntu16.04能上网就可以了。
#apt update (安装ubuntu时如果做了就不做这一步)
#apt-get install git (安装ubuntu时如果做了就不做这一步)
#git clone https://github.com/movidius/ncsdk.git(这个是链接下载V1.XX的版本)
#cd ncsdk
#make install
#make examples (建议先插上神经计算棒在电脑上)
注意-注意-注意:20180817补充说明:上面的git方法下载官网宣布已经失效,movidius官网现在提供新的方法:
#wget https://ncs-forum-uploads.s3.amazonaws.com/ncsdk/ncsdk-01_12_00_01-full/ncsdk-1.12.00.01.tar.gz
#tar xvf ncsdk-1.12.00.01.tar.gz
#cd ncsdk-1.12.00.01
#make install
#make examples
同样V2.05版本可以关注官网的下载方法。
使用git去官网服务器下载对应的NCSDK包,上面的命令前面两个在安装ubuntu的时候就应该安装了,没有安装git工具就做前面两个命令。实际上是简简单单4个命令,就基本保证安装好Intel movidius NCSDK深度学习开发环境(不过这个网络下载安装时间有点长,耐心等待)。然后去淘宝或者京东花550-599元买一个Intel movidius 神经计算棒,插上电脑就可以玩了,VMware虚拟机安装的64bit ubuntu16.04都可以使用,只要支持usb2.0或者同时支持USB2.0-USB3.0的电脑都可以玩。也可以采购本公司的VPU模组,不过本公司的VPU模组(新版本也同时支持USB2.0和USB3.0信号)适合在嵌入式板子上面使用。下面是PC端需要的配置:
Image may be NSFW.
Clik here to view.
图像识别——ubuntu16.04 movidius VPU NCSDK深度学习环境搭建

安装结束后,我们进入ncsdk目录下去看看。
Image may be NSFW.
Clik here to view.
图像识别——ubuntu16.04 movidius VPU NCSDK深度学习环境搭建

Image may be NSFW.
Clik here to view.
图像识别——ubuntu16.04 movidius VPU NCSDK深度学习环境搭建

Image may be NSFW.
Clik here to view.
图像识别——ubuntu16.04 movidius VPU NCSDK深度学习环境搭建

上面3个图注意一下examples里面的路径,ls看看就明白了,NCS配套的SDK中已经集成了一些网络模型比如AlexNet,GoogLeNet,SqueezeNet等,可以直接拿来使用。官方提供的API同时支持C/C++以及Python语言,让用户灵活选择自己熟悉的编程语言。
除了上面的NCSDK软件包,还有另外一个很重要的ncappzoo,NC App Zoo是一个让用户可以分享自己使用NCS做的一些应用、模型的地方,见Intel movidius官网。
还有NCSDK软件工具主要包括了mvNCCompile、mvNCProfile以及mvNCCheck:
• mvNCCompile是将Caffe/TF模型转换为NCS可识别的graph文件
• mvNCProfile是提供每层的数据用于评估Caffe/TF网络模型在NCS上的运行效率,辅助开发者优化网络模型结构
• mvNCCheck是通过在NCS和Caffe/TF上运行网络比较推断的结果
(注意:这些编译工具放在/usr/local/bin目录下,并不在ncsdk源码包里面,还有/opt/movidius目录下也有很多东西,可以进去看一下)
API则是计算神经棒的硬件调用接口,通过训练得到的网络模型可以使用mvNCCompile工具编译为能被NCS识别的graph文件,通过调用API,NCS可以通过USB接口方便的与主机(比如树莓派3B)通信,NCS利用训练好的网络模型计算出图像分析的结果,并传输到主机上,完成推理工作。
以上是PC端 64bit ubuntu16.04环境搭建movidius ncsdk,安装过程是相当简单。当然上面提到的环境搭建并不是嵌入式ARM环境的搭建,在ARM 搭建这个环境需要用到匹配的交叉编译环境,这里先不描述。


Viewing all articles
Browse latest Browse all 532

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>